DeepMind Lab培訓
DeepMind Lab 是一個基於智慧體的人工智慧 (AI) 研究平臺,它使用類似 3D 遊戲的模擬環境來訓練學習代理、運行強化學習演算法和開發機器學習 (ML) 系統。
這種以講師為主導的現場培訓(現場或遠端)針對希望安裝,設置,定製和使用DeepMind Lab平台來開發通用人工智慧和機器學習系統的研究人員和開發人員。
在培訓結束時,參與者將能夠:
- 自訂 DeepMind Lab 以構建和運行適合學習和培訓需求的環境。
- 使用 DeepMind Lab 的 3D 模擬環境以第一人稱視角訓練學習代理。
- 促進代理評估,以在類似 3D 遊戲的世界中開發智慧。
課程形式
- 互動講座和討論。
- 大量的練習和練習。
- 在現場實驗室環境中實際實施。
課程定製選項
- 如需申請此課程的定製培訓,請聯繫我們進行安排。
課程簡介
介紹
DeepMind Lab 特性和體系結構概述
瞭解 DeepMind Lab 中的導航、記憶體和探索
構建和運行 DeepMind Lab
定製 DeepMind Lab
使用程式設計級別創建介面
探索 Python 依賴關係
開始使用 Linux
使用 3D 模擬環境
瞭解觀察和行動
使用人工輸入控制
實施和訓練學習代理
使用上游源
使用外部依賴項、先決條件和移植說明
探索 DeepMind Lab 現實世界的影響和突破
故障排除
總結和結論
最低要求
- 具有 Python 或其他程式設計語言的經驗
- 瞭解人工智慧和機器學習概念
觀眾
- 研究者
- 開發人員
需要幫助選擇合適的課程嗎?
DeepMind Lab培訓 - Enquiry
DeepMind Lab - 咨詢詢問
咨詢詢問
相關課程
Advanced Stable Diffusion: Deep Learning for Text-to-Image Generation
21 時間:這種由講師指導的 澳門 現場培訓(在線或現場)面向希望擴展深度學習以生成文本到圖像的知識和技能的中高級數據科學家、機器學習工程師、深度學習研究人員和計算機視覺專家。
在本次培訓結束時,參與者將能夠:
- 了解用於文字到圖像生成的高級深度學習架構和技術。
- 實施複雜模型和優化,以實現高品質的圖像合成。
- 優化大型數據集和複雜模型的性能和可擴充性。
- 優化超參數以獲得更好的模型性能和泛化。
- 與其他深度學習框架和工具整合 Stable Diffusion
AlphaFold
7 時間:這種由 澳門 的講師指導的現場培訓(在線或現場) 面向希望瞭解 AlphaFold 工作原理並在實驗研究中使用 AlphaFold 模型作為指導的生物學家。
在本次培訓結束時,參與者將能夠:
- 理解 AlphaFold 的基本原理。
- 瞭解 AlphaFold 的工作原理。
- 瞭解如何解釋 AlphaFold 預測和結果。
Deep Learning for Vision with Caffe
21 時間:Caffe是一個深刻的學習框架,以表達,速度和模塊化為基礎。
本課程以MNIST為例,探討了Caffe作為圖像識別的深度學習框架的應用
聽眾
本課程適合有興趣使用Caffe作為框架的Deep Learning研究人員和工程師。
完成本課程後,代表們將能夠:
- 了解Caffe的結構和部署機制
- 執行安裝/生產環境/架構任務和配置
- 評估代碼質量,執行調試,監控
- 實施高級生產,如培訓模型,實施圖層和日誌記錄
Deep Learning Neural Networks with Chainer
14 時間:這種由 講師指導的 澳門 現場培訓(在線或現場)面向希望使用 Chainer 在 Python 中構建和訓練神經網路,同時使代碼易於調試的研究人員和開發人員。
在本次培訓結束時,參與者將能夠:
- 設置必要的開發環境以開始開發神經網路模型。
- 使用易於理解的原始程式碼定義和實現神經網路模型。
- 執行範例並修改現有演算法以優化深度學習訓練模型,同時利用 GPU 實現高性能。
Using Computer Network ToolKit (CNTK)
28 時間:Computer Network ToolKit (CNTK) 是 Microsoft 的開源、多機器、多 GPU、高效的 RNN 訓練機器學習框架,用於語音、文本和圖像。
觀眾
本課程針對旨在在其專案中使用 CNTK 的工程師和架構師。
Computer Vision with Google Colab and TensorFlow
21 時間:這種由 講師指導的 澳門 現場培訓(在線或現場)面向希望加深對計算機視覺的理解並探索 TensorFlow 使用 Google Colab 開發複雜視覺模型的能力的高級專業人士。
在本次培訓結束時,參與者將能夠:
- 使用 TensorFlow 構建和訓練卷積神經網路 (CNN)。
- 利用 Google Colab 進行可擴展且高效的基於雲的模型開發。
- 為電腦視覺任務實施圖像預處理技術。
- 為實際應用程式部署電腦視覺模型。
- 使用遷移學習來增強CNN模型的性能。
- 可視化和解釋圖像分類模型的結果。
Deep Learning with TensorFlow in Google Colab
14 時間:這種以講師為主導的澳門現場培訓(現場或遠端)面向希望使用[0 * ogle Colab環境理解和應用深度學習技術的中級數據科學家和開發人員。
在培訓結束時,參與者將能夠:
- 設置和導航 Google Colab 以進行深度學習專案。
- 瞭解神經網路的基礎知識。
- 使用 TensorFlow 實現深度學習模型。
- 訓練和評估深度學習模型。
- 利用 TensorFlow 的高級功能進行深度學習。
Deep Learning for NLP (Natural Language Processing)
28 時間:在這個由講師指導的澳門現場培訓中,參與者將學習使用Python 庫進行NLP,因為他們創建了一個處理 一組圖片並生成標題的應用程式。
在培訓結束時,參與者將能夠:
- 使用 Python 庫為 NLP 設計和編寫 DL。
- 創建 Python 代碼,讀取大量圖片並生成關鍵字。
- 創建 Python 代碼,用於 從檢測到的關鍵字生成標題。
Edge AI with TensorFlow Lite
14 時間:這種由講師指導的 澳門(在線或現場)實時培訓面向希望利用 TensorFlow Lite 進行邊緣 AI 應用程式的中級開發人員、數據科學家和 AI 從業者。
在培訓結束時,參與者將能夠:
- 瞭解 TensorFlow Lite 的基礎知識及其在邊緣 AI 中的作用。
- 使用 TensorFlow Lite 開發和優化 AI 模型。
- 在各種邊緣設備上部署 TensorFlow Lite 模型。
- 利用工具和技術進行模型轉換和優化。
- 使用 TensorFlow Lite 實現實用的邊緣 AI 應用程式。
Accelerating Deep Learning with FPGA and OpenVINO
35 時間:這種由講師指導的 澳門 現場實時培訓(在線或現場)面向希望加速即時機器學習應用程式並大規模部署它們的數據科學家。
在本次培訓結束時,參與者將能夠:
- 安裝 OpenVINO 工具包。
- 使用 FPGA 加速電腦視覺應用程式。
- 在 FPGA 上執行不同的 CNN 層。
- 在 Kubernetes 群集中的多個節點之間擴展應用程式。
Distributed Deep Learning with Horovod
7 時間:這種由 講師指導的 澳門 現場實時培訓(在線或現場)面向希望使用 Horovod 運行分散式深度學習訓練並將其擴展為在多個 GPU 之間並行運行的開發人員或數據科學家。
在本次培訓結束時,參與者將能夠:
- 設置必要的開發環境以開始運行深度學習訓練。
- 安裝並配置 Horovod 以使用 TensorFlow、Keras、PyTorch 和 Apache MXNet 訓練模型。
- 使用 Horovod 擴展深度學習訓練以在多個 GPU 上運行。
Deep Learning with Keras
21 時間:這種由講師指導的現場培訓在 澳門(在線或現場)進行,面向希望將深度學習模型應用於圖像識別應用的技術人員。
在本次培訓結束時,參與者將能夠:
- 安裝和配置 Keras。
- 快速構建深度學習模型的原型。
- 實現卷積網路。
- 實現循環網路。
- 在 CPU 和 GPU 上執行深度學習模型。
Introduction to Stable Diffusion for Text-to-Image Generation
21 時間:這種講師指導的現場培訓(在線或現場)面向希望 利用 Stable Diffusion 為各種使用案例生成高品質圖像的數據科學家、機器學習工程師和計算機視覺研究人員。
在本次培訓結束時,參與者將能夠:
- 瞭解 Stable Diffusion 的原理以及它如何用於圖像生成。
- 為圖像生成任務構建和訓練 Stable Diffusion 模型。
- 將 Stable Diffusion 應用於各種圖像生成方案,例如修復、出海和圖像到圖像的轉換。
- 優化 Stable Diffusion 模型的性能和穩定性。
Tensorflow Lite for Microcontrollers
21 時間:這種以講師為主導的澳門現場培訓(現場或遠端)面向希望在非常小的嵌入式設備上編寫,載入和運行機器學習模型的工程師。
在培訓結束時,參與者將能夠:
- 安裝 TensorFlow Lite。
- 將機器學習模型載入式設備上,使其能夠檢測語音、對圖像進行分類等。
- 將 AI 添加到硬體設備,而無需依賴網路連接。