Thank you for sending your enquiry! One of our team members will contact you shortly.
Thank you for sending your booking! One of our team members will contact you shortly.
課程簡介
深度學習與 Machine Learning 與其他方法
- 當 Deep Learning 合適時
- Deep Learning 的限制
- 比較不同方法的準確性和成本
方法概述
- 網路和層
- 前向/後向:分層組合模型的基本計算。
- 損失:要學習的任務由損失定義。
- 求解器:求解器協調模型優化。
- 層目錄:層是建模和計算的基本單元
- 卷積
方法和模型
- 反向支柱,模組化模型
- Logsum 模組
- RBF凈值
- MAP/MLE 丟失
- 參數空間變換
- 卷積模組
- 基於梯度的學習
- 推理能量,
- 學習目標
- 主成分分析;NLL:
- 潛在變數模型
- 概率 LVM
- 損失函數
- 使用快速 R-CNN 進行檢測
- 使用 LSTM 的序列和使用 LRCN 的視覺 + 語言
- 使用FCN進行圖元級預測
- 框架設計與未來
工具
- Caffe
- 張量流
- R
- Matlab的
- 別人。。。
最低要求
需要任何程式設計語言知識。熟悉 Machine Learning 不是必需的,但有益。
21 時間:
客戶評論 (2)
亨特很棒,非常有吸引力,知識淵博,風度翩翩。 做得很好。
Rick Johnson - Laramie County Community College
Course - Artificial Intelligence (AI) Overview
機器翻譯
It was very interactive and more relaxed and informal than expected. We covered lots of topics in the time and the trainer was always receptive to talking more in detail or more generally about the topics and how they were related. I feel the training has given me the tools to continue learning as opposed to it being a one off session where learning stops once you've finished which is very important given the scale and complexity of the topic.